Rugpull reports in the DeFi jungle

A rising category of cryptocurrency scams called ‘rugpulls’ accounted for 37% of all cryptocurrency scam revenue in 2021. A rugpull is an exit scam in the DeFi (Decentralized Finance) ecosystem where developers abandon a project without fully delivering and run away with investors’ funds. Thodex, a Turkish centralized exchange, ran away with $2 billion from victims. In March 2022, the U.S. Department of Justice charged two defendants for a $1.1 million NFT rugpull scam called Frosties.

In our paper to be presented next week at Financial Cryptography and Data Security 2023, we analyze an updated list of rugpulls from an online discussion forum – bitcointalk.org. This forum provides a platform for everyone to discuss anything on crypto that also attracts scammers to advertise their projects. We observe that since 2020, the number of rugpull threads has increased, while the ones containing exit scams have decreased; the total mention of either of these terms is relatively stable over time. This means that users have started using the term ‘rugpull’ instead of ‘exit scam’ since the DeFi space emerged.

Using keywords to search for threads discussing rugpulls, we found 101 rugpulls from six services, summarised in Table 1. Our dataset is available from the Harvard Dataverse as doi:10.7910/DVN/SMGMW8.

Service Type Definition Observation
Initial Coin Offerings (ICOs) Raising money to create a new ERC20 token 73
Yield farms Lending crypto assets to earn interest on the loan 16
Exchanges Platforms for users to buy/sell cryptocurrency 5
Non-Fungible Tokens (NFTs) Unique, non-interchangeable digital asset that can be bought and sold 5
Initial Dex Offerings (IDOs) Similar to ICO, but on a decentralized exchange 1
Cloud mining Fractional shares of a mining operation 1
Table 1: DeFi service types by quantity of observed rugpulls (N=101)

We find that Initial Coin Offerings (ICOs) form the majority of rugpulls, and most of them pulled the rug in less than six months. For example, the SquidGame Token, named after a famous TV show, rugpulled within days in 2021.

Continue reading Rugpull reports in the DeFi jungle

UK Parliament on protecting consumers from economic crime

On Friday, the UK House of Commons Treasury Committee published their report on the consumer perspective of economic crime. I’ve frequently addressed this topic in my research, as well as here on Bentham’s Gaze, so I’m pleased to see several recommendations of the committee match what myself and colleagues have proposed. In other respects, the report could have gone further, so as well as discussing the positive aspects of the report, I would also like to suggest what more could be done to reduce economic crime and protect its victims.

Irrevocable payments are the wrong default

Transfers between UK bank accounts will generally use the Faster Payment System (FPS), where money will immediately show up in the recipient account. FPS transfers cannot be revoked, even in the case of fraud. This characteristic protects banks because if fraudulently obtained funds leave the banking system, the bank receiving the transfer has no obligation to reimburse the victim.

In contrast, the clearing system for paper cheques permits payments to be revoked for a few days after the funds appeared in the recipient account, should there have been a fraud. This period allows customers to quickly make use of funds they receive, while still giving a window of opportunity for banks and customers to identify and prevent fraud. There’s no reason why this same revocation window could not be applied to fully electronic payment systems like FPS.

In my submissions to consultations on how to prevent push payment scams, I argued that irrevocable payments are the wrong default, and transfers should be possible to reverse in cases of fraud. The same argument applies to consumer-oriented cryptocurrencies like Libra. I’m pleased to see that the Treasury Committee agrees and they have recommended that when a customer sends money to an account for the first time, that transfer be revocable for 24 hours.

Introducing Confirmation of Payee, finally

The banking industry has been planning on launching the Confirmation of Payee system to check if the name of the recipient of a transfer matches what the customer sending money thinks. The committee is clearly frustrated with delays on deploying this system, first promised for September 2018 but since slipped to March 2020. Confirmation of Payee will be a helpful tool for customers to help avoid certain frauds. Still, I’m pleased the committee also recognise it’s limitations and that the “onus will always be on financial firms to develop further methods and technologies to keep up with fraudsters.” It is for this reason that I argued that a bank showing a customer a Confirmation of Payee mismatch should not be a sufficient condition to hold customers liable for fraud, and the push-payment scam reimbursement scheme is wrong to do so. It doesn’t look like the committee is asking for the situation to be changed though.

Continue reading UK Parliament on protecting consumers from economic crime

Measuring mobility without violating privacy – a case study of the London Underground

In the run-up to this year’s Privacy Enhancing Technologies Symposium (PETS 2019), I noticed some decidedly non-privacy-enhancing behaviour. Transport for London (TfL) announced they will be tracking the wifi MAC addresses of devices being carried on London Underground stations. Before storing a MAC address it will be hashed with a key, but since this key will remain unchanged for an extended period (2 years), it will be possible to track the movements of an individual over this period through this pseudonymous ID. These traces are likely enough to link records back to the individual with some knowledge of that person’s distinctive travel plans. Also, for as long as the key is retained it would be trivial for TfL (or someone who stole the key) to convert the someone’s MAC address into its pseudonymised form and indisputably learn that that person’s movements.

TfL argues that under the General Data Protection Regulations (GDPR), they don’t need the consent of individuals they monitor because they are acting in the public interest. Indeed, others have pointed out the value to society of knowing how people typically move through underground stations. But the GDPR also requires that organisations minimise the amount of personal data they collect. Could the same goal be achieved if TfL irreversibly anonymised wifi MAC addresses rather than just pseudonymising them? For example, they could truncate the hashed MAC address so that many devices all have the same truncated anonymous ID. How would this affect the calculation of statistics of movement patterns within underground stations? I posed these questions in a presentation at the PETS 2019 rump session, and in this article, I’ll explain why a set of algorithms designed to violate people’s privacy can be applied to collect wifi mobility information while protecting passenger privacy.

It’s important to emphasise that TfL’s goal is not to track past Underground customers but to predict the behaviour of future passengers. Inferring past behaviours from the traces of wifi records may be one means to this end, but it is not the end in itself, and TfL creates legal risk for itself by holding this data. The inferences from this approach aren’t even going to be correct: wifi users are unlikely to be typical passengers and behaviour will change over time. TfL’s hope is the inferred profiles will be useful enough to inform business decisions. Privacy-preserving measurement techniques should be judged by the business value of the passenger models they create, not against how accurate they are at following individual passengers around underground stations in the past. As the saying goes, “all models are wrong, but some are useful”.

Simulating privacy-preserving mobility measurement

To explore this space, I built a simple simulation of Euston Station inspired by one of the TfL case studies. In my simulation, there are two platforms (A and B) and six types of passengers. Some travel from platform A to B; some from B to A; others enter and leave the station at one platform (A or B). Of the passengers that travel between platforms, they can take either the fast route (taking 2 minutes on average) or the slow route (taking 4 minutes on average). Passengers enter the station at a Poisson arrival rate averaging one per second. The probabilities that each new passenger is of a particular type are shown in the figure below. The goal of the simulation is to infer the number of passengers of each type from observations of wifi measurements taken at platforms A and B.

Continue reading Measuring mobility without violating privacy – a case study of the London Underground

A Reflection on the Waves Of Malice: Malicious File Distribution on the Web (part 2)

The first part of this article introduced the malicious file download dataset and the delivery network structure. This final part explores the types of files delivered, discusses how the network varies over time, and concludes with challenges for the research community.

The Great Divide: A PUP Ecosystem and a Malware Ecosystem

We found a notable divide in the delivery of PUP and malware. First, there is much more PUP than malware in the wild: we found PUP-to-malware ratios of 5:1 by number of SHA-2s, and 17:2 by number of raw downloads. Second, we found that mixed delivery mechanisms of PUP and malware are not uncommon (e.g., see our Opencandy case study in the paper). Third, the highly connected Giant Component is predominantly a PUP Ecosystem (8:1 PUP-to-malware by number of SHA-2s), while the many “islands” of download activity outside of this component are predominantly a Malware Ecosystem (1.78:1 malware-to-PUP by number of SHA-2s).

Comparing the structures of the two ecosystems,we found that the PUP Ecosystem leverages a higher degree of IP address and autonomous system (AS) usage per domain and per dropper than the Malware Ecosystem, possibly indicating higher CDN usage or the use of evasive fast-flux techniques to change IP addresses (though, given earlier results, the former is the more likely). On the other hand, the Malware Ecosystem was attributed with fewer SHA-2s being delivered per domain than the PUP Ecosystem with the overall numbers in raw downloads remaining the same, which could again be indicative of a disparity in the use of CDNs between the two ecosystems (i.e., CDNs typically deliver a wide range of content). At the same time, fewer suspicious SHA-2s being delivered per domain could also be attributable to evasive techniques being employed (e.g., malicious sites delivering a few types of files before changing domain) or distributors in this ecosystem dealing with fewer clients and smaller operations.

We tried to estimate the number of PPIs in the wild by defining a PPI service as a network-only component (or group of components aggregated by e2LD) that delivered more than one type of malware or PUP family. Using this heuristic, we estimated a lower bound of 394 PPIs operating on the day, 215 of which were in the PUP Ecosystem. In terms of proportions, we found that the largest, individual PPIs in the PUP and Malware Ecosystems involved about 99% and 24% of all e2LDs and IPs in their ecosystems, respectively.

With there being a number of possible explanations for these structural differences between ecosystems, and such a high degree of potential PPI usage in the wild (especially within the PUP Ecosystem), this is clearly an area in which further research is required.

Keeping Track of the Waves

The final part of the study involved tracking these infrastructures and their activities over time. Firstly, we generated tracking signatures of the network-only (server-side) and file-only (client-side) delivery infrastructures. In essence, this involved tracking the root and trunk nodes in a component, which typically had the highest node degrees, and thus, were more likely to be stable, as opposed to the leaf nodes, which were more likely to be ephemeral.

Continue reading A Reflection on the Waves Of Malice: Malicious File Distribution on the Web (part 2)

A Reflection on the Waves Of Malice: Malicious File Distribution on the Web (part 1)

The French cybercrime unit, C3N, along with the FBI and Avast, recently took down the Retadup botnet that infected more than 850,000 computers, mostly in South America. Though this takedown operation was successful, the botnet was created as early as 2016, with the operators reportedly making millions of euros since. It is clear that large-scale analysis, monitoring, and detection of malicious downloads and botnet activity, even as far back as 2016, is still highly relevant today in the ongoing battle against increasingly sophisticated cybercriminals.

Malware delivery has undergone an impressive evolution since its inception in the 1980s, moving from being an amateur endeavor to a well-oiled criminal business. Delivery methods have evolved from the human-centric transfer of physical media (e.g., floppy disks), sending of malicious emails, and social engineering, to the automated delivery mechanisms of drive-by downloads (malicious code execution on websites and web advertisements), packaged exploit kits (software packages that fingerprint user browsers for specific exploits to maximise the coverage of potential victims), and pay-per-install (PPI) schemes (botnets that are rented out to other cybercriminals).

Furthermore, in recent times, researchers have uncovered the parallel economy of potentially unwanted programs (PUP), which share many traits with the malware ecosystem (such as their delivery through social engineering and PPI networks), while being primarily controlled by different actors. However with some types of PUP, including adware and spyware, PUP has generally been regarded as an annoyance rather than a direct threat to security.

Using the download metadata of millions of users worldwide from 2015/16, we (Colin C. Ife, Yun Shen, Steven J. Murdoch, Gianluca Stringhini) carried out a comprehensive measurement study in the short-term (a 24-hour period), the medium-term (daily, over the course of a month), and the long-term (weekly, over the course of a year) to characterise the structure of this complex malicious file delivery ecosystem on the Web, and how it evolves over time. This work provides us with answers to some key questions, while, at the same time, posing some more and exemplifying some significant issues that continue to hinder security research on unwanted software activity.

An Overview

There were three main research questions that influenced this study, which we will traverse in the following sections of this post:

    1. What does the malicious file delivery ecosystem look like?
    2. How do the networks that deliver only malware, only PUP, or both compare in structure?
    3. How do these file delivery infrastructures and their activities change over time?

For full technical details, you can refer to our paper – Waves of Malice: A Longitudinal Measurement of the Malicious File Delivery Ecosystem on the Web – published by and presented at the ACM AsiaCCS 2019 conference.

The Data

The dataset was provided (and pre-sanitized) by Symantec and consisted of 129 million download events generated by 12 million users. Each download event contained information such as the timestamp, the SHA-2s of the downloaded file and its parent file, the filename, the size (in bytes), the referrer URL, Host URLs (landing pages after redirection) of the download and parent file, and the IP address hosting the download.

Continue reading A Reflection on the Waves Of Malice: Malicious File Distribution on the Web (part 1)

Tracing transactions across cryptocurrency ledgers

The Bitcoin whitepaper specifies the risks of revealing owners of addresses. It states that “if the owner of a key is revealed, linking could reveal other transactions that belonged to the same owner.”  Five years later, we have seen many projects which look at de-anonymising entities in Bitcoin. Such projects use techniques such as address tagging and clustering to tie many addresses to one entity, making it easier to analyse the movement of funds. However, this is not only limited to Bitcoin but also occurs on alternative cryptocurrencies such as Zcash and Monero. Thus tracing transactions on-chain is a known and studied problem.

But we have recently seen a shift into entities performing cross-currency trades. For example, the WannaCry hackers laundered over $142,000 Bitcoin from ransoms across cryptocurrencies. The issue here is that cross-chain transactions appear to be indistinguishable from native transactions on-chain. For example, to trade Bitcoin for Monero, one would have to send the exchange bitcoin, and in return, the exchange sends the user some coins in Monero. Both these transactions occur on separate chains and do not appear to be connected, so the actual swap can appear to be obscured. This level of obscurity can be used to hide the original flow of coins, giving users an additional form of anonymity.

Thus it is important to ask whether or not we can analyse such transactions and the extent of the analysis possible, and if so, how? In our paper being presented today at the USENIX Security Symposium, we (Haaroon Yousaf, George Kappos and Sarah Meiklejohn) answer these questions.

Our Research

In summary, we scraped and linked over 1.3 million transactions across different blockchains from the service ShapeShift. In doing so, we found over 100,000 cases where users would convert coins to another currency then move right back to the original one, identified that a Bitcoin address associated with CoinPayments.net address is a very popular service for users to shift to, and saw that scammers preferred shifting their Ethereum to Bitcoin and Monero.

We collected and analysed 13 months of transaction data across eight different blockchains to identify how users interacted with this service. In doing so, we developed new heuristics and identified various patterns of cross-currency trades.

What is ShapeShift? 

ShapeShift is a lightweight cross-currency non-custodial service that facilitates trades which allows users to directly trade coins from one currency to another (a cross-currency shift). This service acts as the entity which facilitates the entire trade, allowing users to essentially swap their coins with its own supply. ShapeShift and Changelly are examples of such services.

Continue reading Tracing transactions across cryptocurrency ledgers

TESSERACT’s evaluation framework and its use of MaMaDroid

In this blog post, we will describe and comment on TESSERACT, a system introduced in a paper to appear at USENIX Security 2019, and previously published as a pre-print. TESSERACT is a publicly available framework for the evaluation and comparison of systems based on statistical classifiers, with a particular focus on Android malware classification. The authors used DREBIN and our MaMaDroid paper as examples of this evaluation. Their choice is because these are two of the most important state-of-the-art papers, tackling the challenge from different angles, using different models, and different machine learning algorithms. Moreover, DREBIN has already been reproduced by researchers even though the code is not available anymore; MaMaDroid’s code is publicly available (the parsed data and the list of samples are available under request). I am one of MaMaDroid’s authors, and I am particularly interested in projects like TESSERACT. Therefore, I will go through this interesting framework and attempt to clarify a few misinterpretations made by the authors about MaMaDroid.

The need for evaluation frameworks

The information security community and, in particular, the systems part of it, feels that papers are often rejected based on questionable decisions or, on the other hand, that papers should be more rigorous, trying to respect certain important characteristics. Researchers from Dutch universities published a survey of papers published to top venues in 2010 and 2015 where they evaluated if these works were presenting “crimes” affecting completeness, relevancy, soundness, and reproducibility of the work. They have shown how the newest publications present more flaws. Even though the authors included their works in the analyzed ones and did not word the paper as a wall of shame by pointing the finger against specific articles, the paper has been seen as an attack to the community rather than an incitement to produce more complete papers. To the best of my knowledge, unfortunately, the paper has not yet been accepted for publication. TESSERACT is another example of researchers’ effort in trying to make the community work more rigorous: most system papers present accuracies that are close to 100% in all the tests done; however, when some of them have been tested on different datasets, their accuracy was worse than a coin toss.

These two works are part of a trend that I personally find important for our community, to allow works that are following other ones on the chronological aspects to be evaluated in a more fair way. I explain with a personal example: I recall when my supervisor told me that at the beginning he was not optimistic about MaMaDroid being accepted at the first attempt (NDSS 2017) because most of the previous literature shows results always over 98% accuracy and that gap of a few percentage points can be enough for some reviewers to reject. When we asked an opinion of a colleague about the paper, before we submitted it for peer-review, this was his comment on the ML part: “I actually think the ML part is super solid, and I’ve never seen a paper with so many experiments on this topic.” We can see completely different reactions over the same specific part of the work.

TESSERACT

The goal of this post is to show TESSERACT’s potential while pointing out the small misinterpretations of MaMaDroid present in the current version of the paper. The authors contacted us to let us read the paper and see whether there has been any misinterpretation. I had a constructive meeting with the authors where we also had the opportunity to exchange opinions on the work. Following the TESSERACT description, there will be a section related to MaMaDroid’s misinterpretations in the paper. The authors told me that the newest versions would be updated according to what we discussed.

Continue reading TESSERACT’s evaluation framework and its use of MaMaDroid

Memes are taking the alt-right’s message of hate mainstream

Unless you live under the proverbial rock, you surely have come across Internet memes a few times. Memes are basically viral images, videos, slogans, etc., which might morph and evolve but eventually enter popular culture. When thinking about memes, most people associate them with ironic or irreverent images, from Bad Luck Brian to classics like Grumpy Cats.

Bad Luck Brian (left) and Grumpy Cat (right) memes.

Unfortunately, not all memes are funny. Some might even look as innocuous as a frog but are in fact well-known symbols of hate. Ever since the 2016 US Presidential Election, memes have been increasingly associated with politics.

Pepe The Frog meme used in a Brexit-related context (left), Trump as Perseus beheading Hillary as Medusa (center), meme posted by Trump Jr. on Instagram (right).

But how exactly do memes originate, spread, and gain influence on mainstream media? To answer this question, our recent paper (“On the Origins of Memes by Means of Fringe Web Communities”) presents the largest scientific study of memes to date, using a dataset of 160 million images from various social networks. We show how “fringe” Web communities like 4chan’s “politically incorrect board” (/pol/) and certain “subreddits” like The_Donald are successful in generating and pushing a wide variety of racist, hateful, and politically charged memes.

Continue reading Memes are taking the alt-right’s message of hate mainstream

Exploring the multiple dimensions of Internet liveness through holographic visualisation

Earlier this year, Shehar Bano summarised our work on scanning the Internet and categorising IP addresses based on how “alive” they appear to be when probed through different protocols. Today it was announced that the resulting paper won the Applied Networking Research Prize, awarded by the Internet Research Task Force “to recognize the best new ideas in networking and bring them to the IETF and IRTF”. This occasion seems like a good opportunity to recall what more can be learned from the dataset we collected, but which couldn’t be included in the paper itself. Specifically, I will look at the multi-dimensional aspects to “liveness” and how this can be represented through holographic visualisation.

One of the most interesting uses of these experimental results was the study of correlations between responses to different combinations of network protocols. This application was only possible because the paper was the first to simultaneously scan multiple protocols and so give us confidence that the characteristics measured are properties of the hosts and the networks they are on, and not artefacts resulting from network disruption or changes in IP address allocation over time. These correlations are important because the combination of protocols responded to gives us richer information about the host itself when compared to the result of a scan of any one protocol. The results also let us infer what would likely be the result of a scan of one protocol, given the result of a scan of different ones.

In these experiments, 8 protocols were studied: ICMP, HTTP, SSH, HTTPS, CWMP, Telnet, DNS and NTP. The results can be represented as 28=256 values placed in a 8-dimensional space with each dimension indicating whether a host did or did not respond to a probe of that protocol. Each value is the number of IP addresses that respond to that particular combination of network protocols. Abstractly, this makes perfect sense but representing an 8-d space on a 2-d screen creates problems. The paper dealt with this issue through dimensional reduction, by projecting the 8-d space on to a 2-d chart to show the likelihood of a positive response to a probe, given a positive response to probe on another single protocol. This chart is useful and easy to read but hides useful information present in the dataset.

Continue reading Exploring the multiple dimensions of Internet liveness through holographic visualisation

Measuring and Modeling the Vivino Wine Social Network

Over the past few years, food and drink have become an essential part of our social media footprints. This shouldn’t come as a surprise – after all, eating and drinking were social activities long before the first #foodporn hashtag on Instagram. In fact, scientific studies have showed that what we gobble up or gulp down is shaped by social and regional influences, and how we tend to mirror habits of people with shared social connections.

Nowadays, we have an unprecedented opportunity to study eating & drinking habits at scale, as people share more and more of that online, both on popular social networks like Instagram, Twitter, and Facebook, but also on “dedicated” apps like Yummly or Untappd.

Along these lines is our recent paper, “Of Wines and Reviews: Measuring and Modeling the Vivino Wine Social Network,” recently presented at the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2018) in Barcelona. The study – co-authored by former UCL undergraduate student Neema Kotonya, Italian wine journalist Paolo De Cristofaro, and UCL faculty Emiliano De Cristofaro –  presented a preliminary study showcasing big-data and social network analysis of how users worldwide consume, rate, and provide reviews of wines. We did so through the lens of Vivino, a popular wine social network. (And, yes, Paolo is Emiliano’s brother! 😊)

What is Vivino?

Vivino.com is an online community for wine enthusiasts, available both as a web and a mobile application. It was founded in 2009 by Heini Zachariassen, with his colleague Theis Sondergaard joining in 2010. In a nutshell, Vivino allows users to review and purchase wines through third-party vendors. The mobile app also provides a “wine scanner” functionality – i.e., users can upload pictures of wine labels and access reviews and details about the wine/winery.

But Vivino is actually a social network, as it allows wine enthusiasts to communicate with and follow each other, as well as share reviews and recommendations. As of September 2018, it had 32 million users, 9.7 million wines covering a multitude of wine styles, grapes, and geographical regions, as well as 103.7 million ratings and almost 35 million reviews.

Continue reading Measuring and Modeling the Vivino Wine Social Network