The 2018 edition of the International Security Protocols Workshop took place last week. The theme this year was “fail-safe and fail-deadly concepts in protocol design”.
One common theme at this year’s workshop is that of threat models and incentives, which is covered by the majority of accepted papers. One of these is our (Sarah Azouvi, Alexander Hicks and Steven Murdoch) submission – Incentives in Security Protocols. The aim of the paper is to discuss how incentives can be considered and incorporated in the security of systems. In line with the given theme, the focus is on fail-safe and fail-deadly cases which we look at for the cases of the EMV protocol, consensus in cryptocurrencies, and non-economic systems such as Tor. This post will summarise the main ideas laid out in the paper.
Fail safe, fail deadly and people
Systems can fail, which requires some thought by system designers to account for these failures. From this setting comes the idea behind fail safe protocols which are such that even if the protocol fails, the failure can be dealt with or the protocol can be aborted to limit damage. The idea of a fail deadly setting is an extension of this where failure is defended against through deterrence, as in the case of nuclear deterrence (sometimes a realistic case).
Human input often plays a role in the use of the system, particularly when decisions are required as in fail safe and fail deadly instances. These decisions are then made according to incentives which can aligned to make the system robust to failure. For a fail deadly alignment, this means that a person in position to prevent system failure will be harmed by the failure. In the fail safe case, the innocent parties should be protected from the consequences of system failure. The two concepts are really two sides of the same coin that assigns liability.
It is often said that people are the weakest link in security, but that is an easy excuse for broken protocols. If security incentives are aligned properly, then humans are the strongest link.
The EMV protocol, adding incentives after the fact
As a first example, we consider the case of the EMV protocol, which is used for the majority of smart card payments worldwide, as well as smartphone and card-based contactless payment. Over the years, many vulnerabilities have been identified and removed. Fraud still exists however, due not to unexpected protocol vulnerabilities but to decisions made by banks (e.g., omitting the ability for cards to produce digital signatures), merchants (e.g., omitting PIN verification) and payment networks not sending transactions details back to banks. These are intentional choices, aiming to saves costs and cut transaction times but make fraud harder to detect.